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The theory of inhomogeneous superfluid turbulence is developed on the basis of kinetics of merging and
splitting vortex loops. Vortex loops composing the vortex tangle can move as a whole with some drift velocity
depending on their structure and length. The flux of length, energy, momentum, etc., executed by the moving
vortex loops takes place. The situation here is exactly the same as in usual classical kinetic theory, with the
difference being that the ‘“carriers” of various physical quantities are not the point particles but extended
objects (vortex loops), which possess an infinite number of degrees of freedom, with highly involved dynam-
ics. We suggest to complete our investigation, based on the supposition that vortex loops have a Brownian
structure, with the only degree of freedom being, lengths of loops /. This concept allows us to study the
dynamics of the vortex tangle on the basis of the kinetic equation for the distribution function n(/,7)—the
density of a loop in the space of their lengths. Imposing the coordinate dependence on the distribution function
n(l,r,r) and modifying the “kinetic” equation with regard to an inhomogeneous situation, we are able to
investigate various problems on the transport processes in superfluid turbulence. In this paper, we evaluate the
flux of the vortex line density L£(x,?) due to the gradient of this quantity. The corresponding evolution of
quantity L(x,7) obeys the diffusion type equation, as it can be expected from dimensional analysis. The
diffusion coefficient is arrived at from calculation of the (size-dependent) free path and drift velocity of the
vortex loops, and takes the value 2.2k, which exceeds approximately 20-fold the value obtained in early
numerical simulation. We discuss the probable reason for this large discrepancy. We use the diffusion equation
to describe the decay of the vortex tangle at a very low temperature. Comparison with recent experiments on

decay of the superfluid turbulence is presented.
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I. INTRODUCTION AND SCIENTIFIC BACKGROUND

The idea that an inhomogeneous vortex tangle evolves in
a diffusivelike manner appeared quite long ago. Thus, the
authors of paper,! who observed the regions of high vortex
line densities L£(r,7)—“plugs” in the channel with the coun-
terflowing He II proposed that this phenomenon appeared
due to diffusion of quantity L£(r,). An attempt to theoreti-
cally describe these processes was made in Refs. 1 and 2,
where it was proposed to introduce the term proportional
V2L (r,?) into the Vinen equation. The authors were not able
to restore the value of the diffusion coefficient from experi-
mental data (these results are reviewed and discussed in Ref.
3). Both the diffusion process and the diffusion coefficient
we obtained from the so-called nonequilibrium thermody-
namics principles developed earlier by the authors in series
of works (see Ref. 4 and references therein). In the paper’ the
spatial diffusion of an inhomogeneous vortex tangle had
been studied numerically (see Fig. 1). Analyzing their re-
sults, the authors determined the diffusion constant to be on
the order of 0.1« (k is the quantum of circulation). Dynamics
of the inhomogeneous vortex tangle had been studied nu-
merically also in the paper.® However, since the authors stud-
ied the dilute tangle, they observed the “ballistic” regime,
rather than pure diffusion. Escape of the vortex rings in the
ballistic regime had been observed experimentally in work.”

In addition to the self-interest, the diffusion problem is
related to the hypothetical close connection between classical
(hydrodynamic) and superfluid turbulence. Recently, the idea
that chaotic set of quantum vortices can mimic classical tur-
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bulence, or at least reproduce many main features, is actively
being developed.>~!3 In principle, this idea had been dis-
cussed early (see, e.g., famous textbook by Frisch'%), as an
alternative version of the problem of classical turbulence.
But only now, when the new powerful experimental methods

(d)

FIG. 1. Diffusion of a vortex tangle at (a) =0 s, (b) r=10.0 s,
(c) t=20.0 s, and (d) t=30.0 s [Tsubota et al. (Ref. 5)]. It is clearly
seen as the near border loops can leave the volume carrying the line
length, energy, momentum, etc.
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in quantum fluids exist, this idea can be checked experimen-
tally and it appears to be very attractive.

One of the starting points, which resulted in this activity,
was the fact that vortex tangle decays at zero temperature,
when the apparent mechanism of dissipation (mutual fric-
tion) is absent. Numerical and experimental observations of
decay of the tangle at zero temperature are presented in the
papers.'>~!8 The physical mechanisms of the dissipation can
be various, some approaches and ideas such as a cascadelike
breakdown of the loops, Kelvin waves cascade, acoustic ra-
diation, reconnection loss, etc., have been discussed in detail
in recent review.'? It is remarkable that all of these mecha-
nisms are realized only on a very small scale. Therefore, it is
natural to suggest that the Kolmogorov cascade occurs with
the flow of energy, just as in the classical turbulence. The
mechanism of the vortex tangle spreading, with the subse-
quent degeneration, is usually ignored. In fact, the contribu-
tion of diffusion had been discussed in the cited experimental
works but based on the value 0.1« for the diffusion constant
obtained in Ref. 5, the authors concluded that this small dif-
fusion coefficient did not lead to correct time of decay. Ap-
preciating the significance of the challenging problem of
classical turbulence, it should be expressed that the idea to
describe the classical (hydrodynamic) turbulence with the
use of a set of quantum vortices is indeed very essential and
deserves scrupulous study. It is particular important to come
back to the question about diffusivelike attenuation of the
superfluid turbulence.

In this present paper, we develop the theory describing the
evolution of an inhomogeneous vortex tangle on the basis of
kinetics of the merging and breaking down vortex loops. We
show that the evolution of a weakly inhomogeneous vortex
tangle obeys the diffusion equation with the coefficient equal
to about 2.2k, which exceeds approximately 20 times the
value obtained in Ref. 5. We present arguments that the dif-
fusion constant would be significantly underestimated in Ref.
5, due to especial procedure used by the authors. We utilize
the diffusion equation to estimate the contribution of diffu-
sionlike attenuation of the vortex tangle at a very low tem-
perature. Comparison is made with the recent experiments on
decay of the superfluid turbulence.'6-18

II. EVOLUTION OF INHOMOGENEOUS VORTEX
TANGLE

A. Gaussian model

Vortex loops composing the vortex tangle can move as a
whole with some drift velocity V; depending on their struc-
ture and their length. The flux of the line length, energy,
momentum, etc., executed by the moving vortex loops takes
place. In the case of inhomogeneous vortex tangle the net
flux due to the gradient of concentration of the vortex line
density appears. The situation here is exactly the same as in
classical kinetic theory with the difference being that the
“carriers” are not the point particles but the extended objects
(vortex loops), which possess an infinite number of degrees
of freedom with very involved dynamics. In addition, while
collision (or self-intersection) of elements of filaments the
so-called reconnection of the lines occurs, loops either merge
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or split, losing their individuality and turning into other
loops. The full statement of this problem requires some ana-
log of the secondary quantization method for extended ob-
jects, or the string field theory, the problem of incredible
complexity. Clearly, this problem can be hardly resolved in
the near future. Some approach crucially reducing the num-
ber of degrees of freedom is required.

We offer to fulfill investigation basing on the supposition
that vortex loops have the Brownian or random walking
structure (see Refs. 20-22). In fact, the method to work with
one-dimensional singularities (from polymer chains to cos-
mic strings>*~23) as with random walking objects is widely
accepted. This can be motivated by the following consider-
ation. Because of the huge number of random collisions
(Ref. 21) the structure of any loop is determined by numer-
ous reconnections. Therefore, any loop consists of small un-
correlated parts, which “remember” previous collisions. This
fact allows us to consider the loop as a random walk. The
main mathematical tool to describe the random-walk struc-
ture is the Wiener distribution (see, e.g., Refs. 23 and 24) for
the probability P({s(£,7)}) to find some particular configura-
tion {s(¢,#)}. From now on we will use the following nota-
tion. The elements of a vortex line are described with the use
of a function s(&,7), which is the time-dependent radius vec-
tor of the points resting on the loop. Variable ¢ labels the
points of the loop. For the sake of convenience, we chose to
make variable £ equal to the arc length, (0= §¢=1). The first
and second derivatives of s(£,¢) with respect to variable ¢ are
just the tangent vector s’(&;) and vector of curvature s”(&;).
The pure Wiener distribution has some deficiencies for de-
scribing real vortex filament. The most apparent one is that
Wiener distribution does not have a finite average
(s’(&,1)s'(€,1)), which is a squared tangent vector. Moreover,
it does not have the squared second derivative
(s"(&,1)s"(£,1)), which is a squared curvature vector. In clas-
sical form, it also does not describe possible anisotropy and
polarization of the loops. To overcome these difficulties, the
so-called generalized Wiener distribution had been offered in
the paper.?? The generalized Wiener distribution takes into
account the possible anisotropy and finite curvature. Namely,
the probability P({s(£,1)}) to find some particular configura-
tion {s(&,1)} is expressed by the probability distribution func-
tional (for details see Ref. 22)

P({s(&n})
Il
=N‘3XP<—J J S,a(fl,f)Aa’B(&—fz)slﬁ(fz,l)dgld&)-
0Jo
(1)

Here N is the normalizing factor and [ is the length of curve.
Parameters of this generalized Wiener distribution [elements
of matrix A*P(& —&,)] were taken so that some quantities
(e.g., mean curvature, coefficients of anisotropy, etc.) evalu-
ated on the basis of Eq. (1) give the values known from both
experimental studies and numerical simulations. The typical
form of function A,g(£,¢’) is a smoothed & function in a
Mexican hat shape with the width equal to &,. According to
this model, the “average” vortex loop has a typical structure
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FIG. 2. Snapshot of the “average” vortex loop obtained from
analysis of the statistical properties. Close (A¢<< &) parts of the line
are separated in 3D space by distance A¢. The distant parts
(&)< A¢) are separated in 3D space by the distance V&AE, i.e., the
vortex loop has the typical random-walk structure. The scale & is
depicted here in the left upper corner.

shown in Fig. 2. The average loop can be imagined as con-
sisting of many arches with the mean radius of curvature
equal & randomly (but smoothly) connected to each other.
The close parts of the loop separated (along the line) by
distance & — ¢, smaller then the mean radius of curvature &,
are strongly correlated, (s’(&;,1)s’(&,,1))— 1, (s’ is the tan-
gent vector) and the line is smooth. Remote parts of the line
(&,—€,> &) are not correlated at all, (s’ (&,,1)s’(&,,1))—0.
Thus for large separations the vortex loop has a typical
“random-walk” structure. This “semifractal” behavior satis-
fies the generalized Wiener distribution. Being the Gaussian
(hence the name “Gaussian model”), the Wiener distribution
allows for readily calculating any average functional
A({s(&,1)}) depending on configuration {s(&,7)}. This can be
done by evaluating the following path integral:

(A(s(&n)) = f DsA({s(&,))P({s(£.0)}).

Thus we consider the vortex tangle as a collection of vor-
tex loops of various lengths /, which is the only degree of
freedom and having the common structure constant &.
Quantity &, is an important parameter of the approach. It
plays the role of the “elementary step” in the theory of poly-
mer. It is also the low cutoff of the developed approach, the
theory does not describe scales smaller then &,. Numerically
&, is on the order of interline space £~2. More precisely,

&= L"Iey(TIN2, 2)

where ¢,(7) is the temperature-dependent function intro-
duced by Schwarz?® in the low-temperature limit ¢,(7)~3.
The density of the loops n(l) in the “space” of their lengths is
defined as the number of loops (per unit volume) with
lengths lying between / and /+dI. The distribution function
n(l,t) obeys the Boltzmann type “kinetic” equation.”’ From
exact solution to this kinetic equation it was found,
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1/4¢3(T) C
l’l(l) — ;2 1752 = ‘S//LZD 512 i (3)
0 0

where Cy;p is a constant on the order of unity. Researching
of an exact solution to this kinetic equation allowed us to
develop a theory of superfluid turbulence, which quantita-
tively describes the main features of this phenomenon.?!

This approach turns out to be useful for the study of the
inhomogeneous vortex tangle. In this case we have to impose
the coordinate dependence on the distribution function and
on parameter &, that is, to put n(l,r,) and &(r,7), and to
modify the kinetic equation with regard to the inhomoge-
neous situation. In fact, in this research we restrict ourselves
to a more modest problem, the question of the spatial and
temporal evolution of the vortex line density L£(r,7). The
corresponding theory can be developed in the spirit of the
classical kinetic theory with the difference being that the
transport processes are executed with the extended objects—
vortex loops. Accordingly, the key questions is to evaluate
the drift velocity V; and the free path \([) for the loop of size
L.

B. Drift velocity and the free path

The drift velocity V; is defined via an averaged quadratic
velocity of the line elements (simple average velocity van-
ishes due to symmetry),

1 2
V,= ] f $(9dé) . (4)

The averaging () should be performed with the use of the
Gaussian model briefly described above. Using the local ap-
proximation approach for velocity of the line elements (see,
e.g., Ref. 26), we rewrite V,2 as

2
Vi= <l_2f s’ (&) X S"(&Méf s'(&) X s"(§2)d§2>.

Quantity B is («/4m)In(L£""?/a,), where q, is the core ra-
dius. Furthermore, using the property of the vector produc-
tion, the Wick theorem for Gaussian variables and the fact
that the correlator between tangent vector s’(&;) and vector
of curvature s”(&;) vanishes, we get

2
Vf=%ff<S'(§1)S’(52))(8”(51)5”(§z)>d§1d§z-

Exploiting further the values of correlation functions

(s'(&)s' (&)=2VT& 8 -&) and (8"(£)s"(&)=1/(2&)
calculated in Ref. 22, we finally find that

V,=C,BNi&, (5)

where C, is a constant close to unity.

Thus, we derive the value of quadratic drift velocity of the
loop of lengths [. As the length tends to value &, then veloc-
ity tends to B/&,. That is justified since the loops of small
size &, have a form close to rings of radius &), which have to
move with the velocity B/&,. On the contrary very large
loops (I>¢), consisting of many arches loops should drift
with very small velocity.
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The free drift continues until the loops collide with other
loops with subsequent formation of larger loops. The number
of collisions P,;(dt), per small interval df, can be estimated
from the “kinetic equation” for the distribution function n(/)
of density of loops in space of their lengths ! (see Refs. 20
and 21). The rate of change in density n(I) due to collisions
is

an(l,1)
t

P =- ZJ JA(ll,l,lz) 5(12 - ll - l)n(l)n(ll)dlldlz

(6)

We omit the processes of the loops breakdown, due to the
self-intersection. The reason is that the migration of loops is
performed mainly by small loops, the large ones undergo
collisions without any essential drift [moreover, the drift ve-
locity V; is small for large loops, see relation (5)]. The left-
hand side of Eq. (6) has a meaning for number of collisions
for loops of length I (number of events per unit volume and
unit time). This is the quantity in which we are interested.
The scattering cross section A(l;,[,l,) describes the rate of
collision of two loops with lengths / and [, forming the
loop of length [,+I=1I,. It is evaluated in the paper’
A(l,,1,1,)=b,,V/,I. Here, b, is the numerical factor (arising
from various orientations of the line elements), approxi-
mately equal to b,,~0.2 and V,=C,/ v‘l?o is the velocity of
approaching vortex loops. Then, the probability Pc,,(dt) for
the loop to collide with other loops (and reconnect) in small
interval dr is

Peyldt) = A(D)dt, (7)

where quantity A is evaluated with the use of relation (6)

Al =2 f f AL, 1L,L) 81, — 1, — Dn(l)dlLdl,.  (8)

We calculate the collision probability A with the use of the
distribution function n(l) expressed by Eq. (3). Simple cal-
culation leads to the following:

A(l) =2BC,b,, L] i. )
&

In the usual way, we conclude that probability P(z) to fly the
time ¢ without collisions is

P(t) = N exp[- A()t] = Nexp(— 2BC,b, Lt \/gz) .
0
(10)

where N is the _normalizing factor. Using that velocity of
loop V,=C,B/ & [see relation (5)], we get that probability
P(x) for the loop of length [, to fly distance x without colli-
sion is

P(x) =2IL exp(-2lb,,Lx). (11)

Per relation (11), the free path \(I) for loop of length [ is
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\(0) = 1/21b,,L. (12)

It is seen that free path \(I) is very small, it implies only very
small loops give a significant contribution to transport pro-
cesses.

C. Flux of length and the diffusion equation

Knowing the averaged velocity V; of loops and the prob-
ability P(x) (both quantities are [ dependent), we can evalu-
ate the spatial flux of the vortex line density £, executed by
the loops. The procedure is very close to the one in the
classical kinetic theory, with the difference being that the
carriers have different sizes, requiring additional integration
over the loop lengths. Let us consider the small area element
placed at some point x and oriented perpendicularly to axis x
(see Fig. 2). The x component flux of the line length ex-
ecuted by loops of sizes I, placed in 6, ¢ direction (from the
left and right sides, correspondingly), and remote from the
area element at distance R can be written as

dj=(6,0,1,R) =In(l,R, 0,¢0)(V, cos O)P(R). (13)

In Eq. (13) (V,cos 6) is just the x component of the drift
velocity, the factor P(R) [Eq. (11)] is introduced to control
an attenuation of flux due to collisions. We took the density
of loops n(l) and, accordingly, vortex line density £, both of
which are functions of space variable [in spatial spherical
coordinates n=n(l,R,0,¢), L=L(l,R,0,¢)]. In the spirit
of classical kinetic theory, we assume the local equilibrium is
established. In particular, the parameter &; [also spatially de-
pendent &=§,(R,6,¢)] is not independent but takes the
“equilibrium” value &,=L7"?/c,(T)\2, given by relation (2),
(see, however, Ref. 28). We also take the local density of
loops, with the equilibrium value n(l) expressed by Eq. (3).
The net flux through the area element is

sin 6d6d e

J.= f [dj.(0,¢,1,R) —dj_(0,¢,l,R)] 1 dldR.
ar

(14)

Assuming that nonuniformity is along the axis x and substi-
tuting expressions for the drift velocity V; [Eq. (5)] and for
the probability of collisionless flight P(R) [Eq. (11)], we re-
write [Eq. (14)] in the following form:

1 on(l,x,
J.= —f IM(ZR cos 9)<,£—COS 0)
4ar ox \s'lgo

X[21b, L exp(-21b, LR)]sin 6d6dedldR. (15)
Using relations (2) and (3), the fact that integral

[In(l)dI=L, we can get rid of quantities &,(x,?) and n(l,x,1),
and express all the terms via vortex line density £(x,?),

J.=-D,dLlox. (16)

Correspondingly, in the general [three-dimensional (3D)]
case, the spatial-temporal evolution of quantity £ obeys the
diffusion type equation
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—=D,V°L,

o (17)

where the diffusion coefficient D, is equal to Cyx. Our ap-
proach is rather crude to claim a good quantitative descrip-
tion. However, if we are to adopt the data grounded in the
exact solution to the Boltzmann-type kinetic equation (Ref.
21) we conclude that C,~2.2. As discussed above, the result
that evolution of the vortex line density obeys the diffusion
type equation, with the diffusion constant on the order of «,
was expected. A point of particular interest is related to the
prefactor C,;. The only former quantitative result was ob-
tained numerically in the paper.® The authors suggested that
C,~0.1, which is about 20 times smaller than our value. We
will discuss the probable reason for this large discrepancy
later. The result obtained is valid for zero temperature. The
case of finite temperature requires separate consideration
since all quantities from the drift velocity V; up to coefficient
¢»(T) between curvature and interline space change due to
the presence of the normal component. We think, however,
that the change in the diffusion coefficient D, should not be
too excessive.

Taking into account that the value D,~2.2k is the key
outcome of this work, it would be instructive to derive the
diffusion constant D, from transparent qualitative consider-
ation without appealing to the Gaussian model. From the
classical kinetic theory (for the flux of ordinary molecules) it
is common knowledge that the phenomenological value of
the diffusion coefficient is (1/3) VA (.., (\fe, is the free path)
and this value practically coincides with the one obtained
from the rigorous theory (Boltzmann equation). Thus, having
the values of the average velocity V; and the free path /..,
one can easily estimate the diffusion constant.

Let us start with the free path. The probability P(l,,,Ar)
(per unit volume) that a rod of length [/ intersects another rod
[y, in time interval Af, should be proportional to the
production of their sizes and approaching velocity V,
P(l,,1,At)=b,,V/l,IAt. Here, b,,~0.2 is a geometric factor,
taking into account the different orientation of loops (in the
context of colliding cosmic strings, this result is obtained in
Ref. 25). Further, we have to collect contributions from all
encountered loops with length /; with the use of the
distribution ~ function n(l)=CI™?.  Having relation
P(l,Ar)=A(l)At, for the probability that the rod (of the
length [) collides in the time interval At, one can conclude
that the probability P(x), for the rod of length [ to fly dis-
tance x without collision, is P(x)=2[L exp(-21b,,Lx). So,
the free path for loop of length [ is 1/21b,,L.

The drift velocity V, can be derived from the following
qualitative reasoning. Successively considering that the aver-
age loop consists of n=1/§, arches, with the mean radius of
curvature equal to & randomly (but smoothly) connected to
each other, we can take its velocity as the resulting velocity
of all arches composing the loop. Since the arches are ran-
domly connected to each other and have the velocity as for
rings, V,..,=B/&, (directed along the normal), the resulting
averaged velocity is the “random walking” average,
VZ= % \‘J’n Varch = B/ V’l§0'
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R x + R cos©

X —R cos 0

FIG. 3. The net flux of length through the small area element
placed in x=0 and orientated perpendicularly to axis x.

Combining the obtained results on the free path and aver-
age quadratic velocity, we can conclude that the diffusion
coefficient of loops with length [ is D(/)=p/ (6V’r§0£lbm).
Collecting contributions from loops of different sizes,
we obtained that the diffusion coefficient D is about
Kc%/ 12b,,~3.75k, which is approximately 1.5 times larger
than value 2.2k, obtained with the use of the Gaussian
model.

III. BOUNDARY CONDITIONS

The boundary conditions depend on the specific statement
of the problem. We will consider three different situations.

(1) Smearing of the tangle. First, let us consider the case
where the vortex tangle is placed in some restricted domain
of superfluid helium. Let us also consider that vortex line
density £ is not too high, allowing the relatively large loop
to be radiated. Moving faster, the smaller loops run down the
larger loops, colliding and reconnecting with them. In this
manner, outside of initial domain, the well-developed tangle
is formed. This, secondary, vortex tangle smoothly joins the
initial tangle inside the domain. This implies that, in this
case, no boundary conditions are required at all and evolu-
tion of the vortex line density obeys Eq. (17) in infinite
space, with initial distribution £(r,0), inside this domain.

(2) Radiation of loops. The second situation is accom-
plished when the radiated vortex loops do not form a suffi-
ciently developed enough vortex tangle to organize the back
flux (into volume). It can happen, for instance, if the initial
tangle is very dense, causing it to radiate only very small
loops, which rapidly propagate. These loops run away with-
out interaction with each other, and with the initial tangle,
from where they are radiated. Another hypothetical variant is
if there is some trap on the boundary, absorbing vortex loops.
The boundary conditions can be found, assuming that diffu-
sivelike flux of length near boundary J=-D,V L(x,,,1) (x, is
the coordinates of the boundary) coincides with the flux ex-
ecuted by vortex loops, radiated through the (right) boundary
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J.(x;,1). The latter is evaluated by an update of Egs. (14) and
(15), where we have to take “noncompensating” flux, only
from the (left) half space (visualize the left half of Fig. 3),

1
Jraa= _f I[n(L,x, + R cos 6)]
4

X[v(I)cos O]P(R)sin 6d0dpdldR
= —f {n(l Xp.1) + &n(l, a )(R 0s 0)}

X ( '[icos 0)[21[7 L exp(-21b,,LR)]
V&
Xsin 0d6dedldR. (18)

The contribution from the second term in square brackets can
be evaluated as early [see relations (15) and (16)] giving the
flux,

1
- 3D,V L1, (19)

To evaluate the contribution from the first term in square
brackets, we have to use again Egs. (15) and (16). Simple
calculation leads to result

CradB‘CS/z’ (20)

with C,,;~0.47. The sum of Egs. (19) and (20) gives the
flux, formed with the radiated and escaped loops. It should
be equal to the flow —D,V L(x,,,1), which provides the loops
in the region near the border. Then we finally have the fol-
lowing boundary condition:

1
Caal?* + EDU V L(x,,1) = 0. (21)

For the left boundary there should be a minus sign.

(3) Solid walls. In the case of a solid wall, which corre-
sponds to some experiments, the situation is more involved.
Vortices can annihilate on the solid wall, they can undergo
pinning and depinning, with the back radiation of vortices
entering the bulk of helium. Surely, this requires a special
treatment, which goes beyond the scope of the work. One
possibility is to consider the solid wall as a “partial” trap,
which catches the loops and re-emits a part of them back into
the bulk. Formally, it can be written as condition (21) with
additional term J,,.; describing the back flux. Without de-
tailed analysis, it can be assumed that the back flux is pro-
portional to the vortex line density L(x,,7) on boundary,
Jpack==CpaciL(x},,1) with coefficient Cp,; depending on the
dynamics of the lines on the wall (jumps between pinning
sites, Kelvin waves dynamics near the wall, etc.). Thus, the
boundary condition (21) for pure trap can be written in form

1
CdeS/Z + EDU \Y E(x;,,l‘) - Cbackﬁ =0. (22)
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FIG. 4. Development of the vortex line density distribution. The
dotted line shows the results of the numerical simulation while the
solid lines obtained from solution of the diffusion equation with the
diffusion constant is equal to C;,~0.1X 1073 cm?/s and with the
auxiliary term —y,(x/2)L? [Tsubota er al. (Ref. 5)].
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IV. DECAY OF THE VORTEX TANGLE

Numerical simulations

Let us discuss how the developed approach can be applied
to the problem of the vortex tangle decay at zero tempera-
ture. It is clear that escape of the loops from the bulk results
in the attenuation of the vortex line density. As discussed
above, the contribution of diffusion (or radiation of loops) is
usually ignored, mainly due to the small value of the diffu-
sion constant offered in the paper.’ The authors offered the
value =0.1«, which is approximately 20 times smaller than
the D,=2.2k, obtained in the present paper. Let us discuss
the probable reason for this large discrepancy. In the paper it
was studied one-dimensional evolution (spatial spreading) of
the vortex tangle, concentrated initially in a domain of space
and having nonuniform distribution as it is depicted in the
first picture in Fig. 4. To describe this evolution of the vortex
line density it was suggested that the quantity £(x,t) obeys
Eq. (17), with the additional term —y,(«/2)L?, describing
the “homogeneous decay” of the vortex tangle.?® In turn, this
term was introduced to describe the decay of the vortex
tangle in previous numerical simulation made by Tsubota et
al." Tt was done merely to adjust the Vinen equation without
profound analysis of the mechanisms of the decay.

Let us briefly analyze the situation presented in the
paper'® and demonstrate that none of the currently discussed
mechanisms of the “homogeneous” decay of the vortex
tangle at zero temperature can be applied to this work.

Kelvin waves cascade with the subsequent dissipation.
Kelvin waves cascade could not be a reason for the vortex
tangle decay in numerical simulation,'®> simply because the
space resolution Aé¢=2X 1072 cm was too large to monitor
the region of large wave numbers, required for observation
of a generation of higher harmonics.

Acoustic radiation. Similarly, the acoustic radiation could
not be a reason for the vortex tangle decay because the com-
pressibility had not been included in the numerical scheme.
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Loss of the line length during reconnection. Real effect of
the length loss can be obtained only on the basis of more
rigorous theory, e.g., with the use of the Gross-Pitaevskii
equation. It is known, however, that an artificial loss of
length is possible due to realization of the reconnection pro-
cedure. This effect, however, should depend on the space
resolution, whereas it was proven that the rate of decay did
not depend on A¢ (see Fig. 11 of the paper'?).

Feynman cascade of consequent breaking down of vortex
loops. The breaking down of vortex loops is a very important
ingredient in the whole vortex tangle evolution. This process
was imitated in Ref. 15 with elimination of very small loops
(with sizes of several A¢). Unfortunately, exact monitoring
of these eliminations had not been performed. However, it is
clear that very small loops can appear, only in the processes
of self-intersection of larger loops. The total number of re-
connections of this type (self-reconnection) was estimated in
Ref. 15 (see Table I of this paper). Even this amount is too
small to describe the decay of vortex line density observed in
the numerical experiment.

To resume, one concludes that none of the discussed
mechanisms could be the reason of the homogeneous decay
of the vortex tangle in numerical simulation.'® Thus, the na-
ture of attenuation of the vortex line density in Ref. 15 [and,
correspondingly, the nature of the term —y,(x/2m)L?] re-
mained unclear. The question of diffusivelike decay was not
discussed in this paper, although the authors did describe
how vortex loops escaped from the volume and stuck to the
walls. In light of the foregoing, we assume that the vortex
tangle decay observed in Ref. 15 occurred due to the escape
of the vortex loops and the latter was implemented with a
diffusion mechanism. The same assumption concerns the
work,> where a similar numerical procedure had been used.
Thus, we assert that the decay of the vortex tangle in both
cited works can be described essentially as a process of dif-
fusion, without the additional term —y,(k/2m)L>. At the
same time, because of this additional term, the contribution
of diffusion to the whole decay would be significantly under-
estimated in work.

To confirm our assumptions, we calculated the spatial-
temporal evolution of the vortex line density £(r,7) [under
the conditions of numerical experiment (Refs. 5 and 15)],
using Eq. (17), with the diffusion coefficient equal to 2.2k.
In the paper’ it was studied evolution of the vortex tangle
confined to a 1 cm cube. When a random tangle was devel-
oped, the counterflow is turned off and the temperature re-
duced to zero, vortices with parts in the right-hand half of the
cube are removed, and the evolution of the remaining vorti-
ces is followed, now with a fully nonlocal Biot-Savart dy-
namics. To model these conditions we studied one-
dimensional evolution (spatial spreading) of the vortex
tangle, concentrated initially in a domain of space and hav-
ing nonuniform distribution as it is depicted in the first pic-
ture in Fig. 4. We accepted the boundary conditions of the
first kind (see above) since there was free smearing of the
tangle into the vortex free volume filled with helium II. In
this situation the classical solution (see, e.g., Ref. 30)
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FIG. 5. Evolution of the vortex line density calculated with the
use of Eq. (17) without the auxiliary term, the diffusion constant
was equal to C;~2.2X 1073 cm?/s.

1 (7 (x— 77)2}
Lx,t)=——=| L(x,0)exp| - d 23
1) 2NTDt ) o (0 xp{ 4D, t 7 (23)

can be applied. The initial distribution £(x,0) corresponds to
the first (upper left) picture in Fig. 4. The result of calcula-
tion basing on relation (23) is depicted in picture of Fig. 5.

The situation in the paper' is somewhat different. Ini-
tially, the vortex tangle uniformly occupied a cubic volume
with an edge equal 1 cm. It was created by counterflowing
helium IT at finite (about 1.6 K) temperature. Periodic bound-
ary conditions were applied at the faces normal to the flow;
the other faces were taken as solid. Then the mutual friction
coefficient was set to be equal to zero and the counterflow
was switched off. After that the decay of superfluid turbu-
lence was observed. Attenuation of vortex line density is
depicted in the upper picture of Fig. 6. Periodic boundary
condition in one direction mimicked an infinite uniform dis-
tribution along this axis. Thus, the problem turned out to be
essentially two dimensional. We calculated the two-
dimensional evolution of the vortex line density in the 1 cm
square resolving numerically Eq. (17) with the boundary
conditions of third kind (solid walls). As discussed above, we
can (in the frame of the present paper) determine the bound-
ary condition only up to the coefficient of re-emission Cj,t-
Considering it as a fitting parameter, we have chosen the
value of Cy,.=~4. The problem had been resolved numeri-
cally and the result is depicted in the lower picture of Fig. 6.
It should be noted that the solution is not too sensitive to
choice of the fitting parameter. For example, the changed in
the fitting parameter Cp,,=~4 from 0.5 to 10 led to a change
in the final value of the vortex line density (at =100 s) from
90 to 150 ¢cm™2. Comparison of Figs. 4 and 5 as well as the
upper and lower pictures of Fig. 6, enabled us to conclude
that the diffusion spreading (with diffusion constant D,
~2.2x%107% cm?/s) describes satisfactorily the evolution of
the vortex tangle, without any additional term. Moreover, as
discussed above, there are no reasons for the homogeneous
decay in the numerical studies.>"
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FIG. 6. In the upper picture it is depicted the attenuation of
vortex line density obtained in numerical experiment (Ref. 15). In
the lower picture it is depicted the same quantity calculated with the
use of Eq. (17) without the auxiliary term, the diffusion constant
was equal to C;~2.2X 1073 cm?/s.

V. EXPERIMENTAL RESULTS

Let us now discuss two recent experiments on decay of
the vortex tangle at very low temperatures.'”!¥ The authors
reported attenuation of vortex line density in superfluid tur-
bulent helium (*He-B in the paper'” and “He in the paper'®).
They attribute the decay of the vortex tangle to the classical
turbulence mechanisms. Without discussing this variant, we
would like to simply estimate the contribution into attenua-
tion of the vortex line density due to the pure diffusion
mechanism.

In the upper picture of Fig. 7, we displayed Fig. 2 of
work,!” showing results of measurements on the temporal
behavior of the average vortex line density L£(z) (solid
curves, see Ref. 17 for details). We calculated the same quan-
tity resolving the diffusion Eq. (17), with the use of the first
kind (see above) boundary condition, which corresponds to
the smearing of the vortex tangle into ambient space. It is
known that for this condition the solution of three-
dimensional problem is just production of three one-
dimensional solutions of form (23). Therefore, the averaged
vortex line density £() can be evaluated as follows:
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FIG. 7. (Color online) Comparison with experiment (Ref. 17).
See the text.

_ 1 Xo—X Xo+x 3
L(1) = L(x,0) o J_XO dx[erf( \/Et) + erf( \/Et)] .
(24)

Here £(x,0) is the initial distribution of the vortex line den-
sity, which is supposed to be uniform in the domain
(=xp<x<xp) and erf(z) is the error function. In the lower
picture of Fig. 7 we depicted the evolution of the averaged
vortex line density £(7) for three different initial conditions.
The lines were obtained evaluating Eq. (24). The straight line
in the lower picture exactly corresponds to line A in the
upper picture (this line was named by the authors of paper!’
as a “limiting behavior”). It is obvious that there is substan-
tial correlation between experimental data and theoretical
predictions, except for the fact that our curves do not col-
lapse in universal limiting behavior at the late-time interval
but are slightly separated.

In contrast to work,!” in the paper,'® the decay of vortex
tangle in He II was observed in the closed cube with solid
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walls. In the upper picture of Fig. 8, it is depicted the tem-
poral behavior of the average vortex line density L,,(f) is
depicted. We calculated the same dependence on the basis of
the diffusion Eq. (17), with the third kind boundary (solid
walls). As discussed above, we can (in the frame of the
present paper) determine the boundary condition only up to
the coefficient of re-emission C,,.. In example with the nu-
merical simulation’® we used C,,.,=4. In principle, it is not
necessary that the constant describing the back radiation of
the loops is the same in different experiments. Indeed, this
quantity depends on the properties of surface and the latter
can be different in various experiments. Nevertheless we
used again the value C,,=4. The fully three-dimensional
problem was resolved numerically, the result shown in the
lower picture of Fig. 8. Considering it as a fitting parameter,
we have chosen the value of C,,=0.9. It can be seen that
the decay of the vortex tangle, due to diffusion, reproduces
some feature observed in the experiment. There is one quite
interesting by-product of the consideration exposed above.
For small values of vortex line density the bend appears on
curve L(t) (see the lower picture of Fig. 8). It corresponds to
the fact that the diffusivelike flux of the length vanishes [be-
cause of vanishing the gradient VL(x,,7)], and only the first
and third terms in the boundary condition (22) survive. Let
us recall that these terms correspond to radiation of loops,
from the bulk to the boundary and to the re-emission of loops
from the wall, into the bulk of helium. Comparing these
terms (for the chosen value Cp,=~0.9), we discover that
equilibrium is reached for the value of the vortex line density
L of order 50—100 cm™2. This value can be considered as a
“background” value of pre-existing vortices in helium.

Let us now discuss the comparison between experimental
data and our predictions. First of all, the whole qualitative
behavior of lines agrees with diffusivelike attenuation. In
particular, there is a plateau, which is changed with the fast
decay of the tangle. Full decay of the superfluid turbulence
occurs in times, which are in a very good agreement, pre-
dicted on the basis of the diffusion approach elaborated here.
The slope of the curve in the interval of the most intensive
decrease shows the dependence close to ~*'2, which is also
typical for diffusion.

Resuming this section we can conclude that our theoreti-
cal predictions have good agreement with the experimental
data. Nevertheless, we would like to stress that the study
does not claim to be an exhaustive explanation for experi-
ments [Refs. 17 and 18]. First of all, there is one feature,
which we are not in a position to describe. Our approach
does not give an answer why, at large moments of time, all
curves (independently on initial values), collapse into single
behavior. One of the reasons for this discrepancy would be
that in the region where this limiting behavior is observed,
the vortex line density is small and the vortex tangle is ex-
tremely diluted, and are only few lines in the whole volume
exist. For the diluted vortex tangle, the model based on ki-
netics of merging and splitting vortex loops is not satisfac-
tory. Instead of a set of the vortex loops of different sizes,
few long lines stretching for the whole volume appear in the
system. Second, we do not consider here, the case where the
vortex lines are strongly polarized so that the coarse-grained
motion induced by the bundles of filaments imitates classical
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FIG. 8. (Color online) Comparison with experiment (Ref. 18).
See the text.

(Kolmogorov) turbulence (see Refs. 10, 31, and 32). We con-
sider here, the case of the so-called Vinen turbulence, where
the vortex loops are highly disordered, with the zero mean
vorticity. At the same time, it would not be ruled out that
superfluid turbulence observed in works'” and Ref. 18 be-
longs to the first case of polarized vortex lines. Therefore, the
conclusion to this section can be formulated as “the decay of
the superfluid turbulence is a very involved and unclear pro-
cess and the possibility of diffusion affecting the decays re-
ported in Refs. 17 and 18 ought to be taken into account.”
Especially it concerns the situation when decay of the super-
fluid turbulence serves as the basis for the idea about simi-
larity between classical and quantum turbulence.

VI. CONCLUSION

In summary, the theory describing the evolution of the
inhomogeneous vortex tangle at zero temperature was devel-
oped on the bases of kinetics of merging and splitting vortex
loops. Using the Gaussian model for vortex loops we calcu-
lated the (size-dependent) free path and mean quadratic ve-
locity of vortex loops. With the use of these quantities we
calculated the flux of the vortex line density L£(x,f) in an
inhomogeneous vortex tangle and demonstrated that under
certain circumstances it satisfies the diffusionlike equation
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with the coefficient equal approximately to 2.2x. We used
this equation to describe the decay of the vortex tangle at
very low temperature. We compared the solution with the
recent experiments on the decay of the superfluid turbulence.
There was agreement with the experimental data allowing us
to conclude that the diffusion processes give a significant
contribution in the free decay of the vortex tangle at the
absence of the normal component. The decay of superfluid
turbulence is not the only application of the theory devel-
oped. Some other obvious applications can be related with
the motion of turbulent fronts and “plugs” or, e.g., with di-
rect observation of the spread of turbulence in the bulk.

PHYSICAL REVIEW B 81, 064512 (2010)

These applications can be experimentally tested and will be
investigated in the future.
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